12 resultados para nanoparticles

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable, OH free zinc oxide (ZnO) nanoparticles were synthesized by hydrothermal method by varying the growth temperature and concentration of the precursors. The formation of ZnO nanoparticles were confirmed by x-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) studies. The average particle size have been found to be about 7-24 nm and the compositional analysis is done with inductively coupled plasma atomic emission spectroscopy (ICP-AES). Diffuse reflectance spectroscopy (DRS) results shows that the band gap of ZnO nanoparticles is blue shifted with decrease in particle size. Photoluminescence properties of ZnO nanoparticles at room temperature were studied and the green photoluminescent emission from ZnO nanoparticles can originate from the oxygen vacancy or ZnO interstitial related defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the procedures reported for the synthesis of metal nanoparticles involve the use of strong reducing agents or elevated temperatures. This limits the possibility of developing metal nanoparticle based sensors for the in situ detection of analytes. One of the objectives of the present investigations is to (i) develop newer methodologies for the synthesis of metal nanoparticles in aqueous medium at ambient conditions and (ii) their use in the detection of metal cations by taking advantage of the unique coordination ability. Ideally, biocompatible molecules which possess both the reducing and stabilizing groups are desirable for such applications. Formation of stable supramolecular assembly, by bringing metal nanoparticles close to each other, results in plasmon coupling and this strategy can be effectively utilized for the development of metal nanoparticle based sensors.Another objective of the present study is to understand the supramolecular organization of molecules on surfaces. Various noncovalent interactions between the molecules and with surface play a decisive role in their organizations. An in-depth understanding of these interactions is essential for device fabrications. Recent photophysical studies have revealed that phenyleneethynylene based molecular systems are ideal for device application. The second objective of the thesis focuses on understanding the (i) organization of phenyleneethynylenes on highly oriented pyrolytic graphite (HOPG) surface with atomic level precision and (ii) weak intermolecular interactions which drive their organization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite Fe3O4–SiO2 materials were prepared by the sol–gel method with tetraethoxysilane and aqueous-based Fe3O4 ferrofluids as precursors. The monoliths obtained were crack free and showed both optical and magnetic properties. The structural properties were determined by infrared spectroscopy, x-ray diffractometry and transmission electron microscopy. Fe3O4 particles of 20 nm size lie within the pores of the matrix without any strong Si–O–Fe bonding. The well established silica network provides effective confinement to these nanoparticles. The composites were transparent in the 600–800 nm regime and the field dependent magnetization curves suggest that the composite exhibits superparamagnetic characteristics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc aluminate nanoparticles with average particle size of 40 nm were synthesized using a sol–gel combustion method. X-ray diffractometry result was analysed by Rietveld refinement method to establish the phase purity of the material. Different stages of phase formation of the material during the synthesis were investigated using differential scanning calorimetry and differential thermogravimetric analysis. Particle size was determined with transmission electron microscopy and the optical bandgap of the nanoparticles was determined by absorption spectroscopy in the ultraviolet-visible range. Dielectric permittivity and a.c. conductivity of the material were measured for frequencies from 100 kHz to 8 MHz in the temperature range of 30–120◦C. The presence of Maxwell– Wagner type interfacial polarization was found to exist in the material and hopping of electron by means of quantum mechanical tunneling is attributed as the reason for the observed a.c. conductivity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles are of immense importance both from the fundamental and application points of view. They exhibit quantum size effects which are manifested in their improved magnetic and electric properties. Mechanical attrition by high energy ball milling (HEBM) is a top down process for producing fine particles. However, fineness is associated with high surface area and hence is prone to oxidation which has a detrimental effect on the useful properties of these materials. Passivation of nanoparticles is known to inhibit surface oxidation. At the same time, coating polymer film on inorganic materials modifies the surface properties drastically. In this work a modified set-up consisting of an RF plasma polymerization technique is employed to coat a thin layer of a polymer film on Fe nanoparticles produced by HEBM. Ball-milled particles having different particle size ranges are coated with polyaniline. Their electrical properties are investigated by measuring the dc conductivity in the temperature range 10–300 K. The low temperature dc conductivity (I–V ) exhibited nonlinearity. This nonlinearity observed is explained on the basis of the critical path model. There is clear-cut evidence for the occurrence of intergranular tunnelling. The results are presented here in this paper

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential applications of nickel nanoparticles demand the synthesis of self-protected nickel nanoparticles by different synthesis techniques. A novel and simple technique for the synthesis of self-protected nickel nanoparticles is realized by the inter-matrix synthesis of nickel nanoparticles by cation exchange reduction in two types of resins. Two different polymer templates namely strongly acidic cation exchange resins and weakly acidic cation exchange resins provided with cation exchange sites which can anchor metal cations by the ion exchange process are used. The nickel ions which are held at the cation exchange sites by ion fixation can be subsequently reduced to metal nanoparticles by using sodium borohydride as the reducing agent. The composites are cycled repeating the loading reduction cycle involved in the synthesis procedure. X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron microscopy, Energy Dispersive Spectrum, and Inductively Coupled Plasma Analysis are effectively utilized to investigate the different structural characteristics of the nanocomposites. The hysteresis loop parameters namely saturation magnetization and coercivity are measured using Vibrating Sample Magnetometer. The thermomagnetization study is also conducted to evaluate the Curie temperature values of the composites. The effect of cycling on the structural and magnetic characteristics of the two composites are dealt in detail. A comparison between the different characteristics of the two nanocomposites is also provided

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide free stable metallic nanofluids have the potential for various applications such as in thermal management and inkjet printing apart from being a candidate system for fundamental studies. A stable suspension of nickel nanoparticles of ∼5 nm size has been realized by a modified two-step synthesis route. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the nanoparticles are metallic and are phase pure. The nanoparticles exhibited superparamagnetic properties. The magneto-optical transmission properties of the nickel nanofluid (Ni-F) were investigated by linear optical dichroism measurements. The magnetic field dependent light transmission studies exhibited a polarization dependent optical absorption, known as optical dichroism, indicating that the nanoparticles suspended in the fluid are non-interacting and superparamagnetic in nature. The nonlinear optical limiting properties of Ni-F under high input optical fluence were then analyzed by an open aperture z-scan technique. The Ni-F exhibits a saturable absorption at moderate laser intensities while effective two-photon absorption is evident at higher intensities. The Ni-F appears to be a unique material for various optical devices such as field modulated gratings and optical switches which can be controlled by an external magnetic field

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cochin estuary (CE), which is one of the largest wetland ecosystems, extends from Thanneermukkam bund in the south to Azhikode in the north. It functions as an effluent repository for more than 240 industries, the characteristics of which includes fertilizer, pesticide, radioactive mineral processing, chemical and allied industries, petroleum refining and heavy metal processing industries (Thyagarajan, 2004). Studies in the CE have been mostly on the spatial and temporal variations in the physical, chemical and biological characteristics of the estuary (Balachandran et al., 2006; Madhu et al., 2007; Menon et al., 2000; Qasim 2003;Qasim and Gopinathan 1969) . Although several monitoring programs have been initiated in the CE to understand the level of heavy metal pollution, these were restricted to trace metals distribution (Balachandran et al., 2005) or the influence of anthropogenic inputs on the benthos and phytoplankton (Madhu et al., 2007;Jayaraj, 2006). Recently, few studies were carried out on microbial ecology in the CE(Thottathil et al 2008a and b;Parvathi et al., 2009and 2011; Thomas et al., 2006;Chandran and Hatha, 2003). However, studies on metal - microbe interaction are hitherto not undertaken in this estuary. Hence, a study was undertaken at 3 sites with different level of heavy metal concentration tounderstand the abundance, diversity and mechanisms of resistance in metal resistant bacteria and its impact on the nutrient regeneration. The present work has also focused on the response of heavy metal resistant bacteria towards antibacterial agent’s antibiotics and silver nanoparticles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cochin University of Science And Technology